NWChem: Planewave Density Functional Theory
Outline

Overview of Plane-Wave Density Functional Module in NWChem
- NWPW capabilities
- Plane-Wave Basis

Basic examples:
- Geometry optimization for S_2 molecule
- Calculations for diamond
 - Optimizing the unit cell and geometry for an 8 atom supercell of diamond with PSPW
 - Optimizing the unit cell for an 8 atom supercell of diamond with BAND

AIMD Simulations
- Car-Parrinello Simulation of S_2 molecule
Highly scalable
- CG, limited memory BFGS, and RMM-DIIS minimization
- Gamma and Band structure capabilities
- Car-Parrinello and Born-Oppenheimer (extended Lagrangian dynamics)
- Constant energy and constant temperature Car-Parrinello
- Fixed atoms in cartesian, SHAKE constraints, translation constraints, and rotation constraints, Metadynamics, PMF
- Hamann, Troullier-Martins, and HGH norm-conserving pseudopotentials with optional semicore corrections
 - Interface for CPI and TETER formats
- PAW (full integration finished in FY11)

- LDA and PBE96 exchange-correlation potentials (spin-restricted and unrestricted) SIC, pert-OEP, Hartree-Fock and Hybrid Functionals (restricted and unrestricted)
- Fractional occupation,
- Geometry/unitcell optimization, frequency, transition-state searches
- AIMD/MM
- Wannier analysis
- Wavefunction, density, electrostatic, Wannier, ELF plotting

...
Gaussian DFT Versus Plane-Wave DFT

Gaussian Basis Set
- Parallel Efficient
- All-Electron
 - Core regions included in calculation
 - First row transition metals can readily be calculated
- Ab Initio MD expensive
 - Pulay forces
- Different basis sets for molecules and solids

PlaneWave Basis Set
- Parallel Efficient
- Requires pseudopotentials to be efficient
 - Not all-electron
 - Core region not included
 - First row transition metals are difficult
 - Norm-conserving pseudopotentials of the nodeless 3d states require large plane-wave basis sets
 - Significant overlap between the valence 3d states and 3s and 3p states
- Efficient Ab Initio MD
 - Car-Parrinello
- Same basis set for molecules and solids
Minimal Input Example

- Minimal input (all defaults)

```
geometry
Be 0 0 0
end
task pspw
```

- Performs a closed-shell N³ DFT calculation using the local density approximation on the beryllium atom.

- Important Keywords: `simulation_cell`, `vectors`, `XC`, `tolerances`
Example Input: S2 molecule LDA geometry opt.

title "total energy of s2-dimer LDA/30Ry with PSPW method"
start s2-pspw-energy
geometry
S 0.0 0.0 0.0
S 0.0 0.0 1.88
end
nwpw
 simulation_cell
 SC 20.0
 end
 cutoff 15.0
 mult 3
 xc lda
 lmbfgs
end
task pspw energy
task pspw optimize #optimize geometry
The energies from the simulation

... == Summary Of Results ==

number of electrons: spin up= 7.00000 down= 5.00000 (real space)

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>total energy</td>
<td>-0.2041363137E+02</td>
</tr>
<tr>
<td>total orbital energy</td>
<td>-0.4944372503E+01</td>
</tr>
<tr>
<td>hartree energy</td>
<td>0.1680529987E+02</td>
</tr>
<tr>
<td>exc-corr energy</td>
<td>-0.4320620600E+01</td>
</tr>
<tr>
<td>ion-ion energy</td>
<td>0.8455644190E-02</td>
</tr>
<tr>
<td>kinetic (planewave)</td>
<td>0.7529965882E+01</td>
</tr>
<tr>
<td>V_local (planewave)</td>
<td>-0.4506036741E+02</td>
</tr>
<tr>
<td>V_nl (planewave)</td>
<td>0.4623635248E+01</td>
</tr>
<tr>
<td>V_Coul (planewave)</td>
<td>0.3361059973E+02</td>
</tr>
<tr>
<td>V_xc. (planewave)</td>
<td>-0.5648205953E+01</td>
</tr>
<tr>
<td>Virial Coefficient</td>
<td>-0.1656626150E+01</td>
</tr>
</tbody>
</table>

orbital energies:
-0.2001309E+00 (-5.446eV)
-0.2001309E+00 (-5.446eV)
-0.3294434E+00 (-8.965eV)
-0.3294435E+00 (-8.965eV)
-0.3582269E+00 (-9.748eV)
-0.5632339E+00 (-15.326eV)
-0.7642738E+00 (-20.797eV)

Total PSPW energy : -0.2041363137E+0
Optimizing the unit cell and geometry for an 8 atom supercell of diamond with PSPW

title "Diamond 8 atom cubic cell - geometry and unit cell optimization"

#**** Enter the geometry using fractional coordinates
geometry center noautosym noautoz print
system crystal
 lat_a 3.56d0
 lat_b 3.56d0
 lat_c 3.56d0
 alpha 90.0d0
 beta 90.0d0
 gamma 90.0d0
end
C -0.50000d0 -0.50000d0 -0.50000d0
C 0.00000d0 0.00000d0 -0.50000d0
C 0.00000d0 -0.50000d0 0.00000d0
C -0.50000d0 0.00000d0 0.00000d0
C -0.25000d0 -0.25000d0 -0.25000d0
C 0.25000d0 0.25000d0 -0.25000d0
C 0.25000d0 -0.25000d0 0.25000d0
C -0.25000d0 0.25000d0 0.25000d0
end

...
Optimizing the unit cell and geometry for an 8 atom supercell of diamond with PSPW

nwpw
 ewald_rcut 3.0
 ewald_ncut 8 #The default value of 1 needs to be increased for small cells
 lmbfgs
 xc pbe96
end

driver
 clear
 maxiter 40
end

set nwpw:cif_filename diamond.opt # create a CIF file containing optimization history
set includestress .true. # this option tells driver to optimize the unit cell
task pspw optimize ignore
Optimizing the unit cell and geometry for an 8 atom supercell of diamond with PSPW

Optimization converged

<table>
<thead>
<tr>
<th>Step</th>
<th>Energy</th>
<th>Delta E</th>
<th>Gmax</th>
<th>Grms</th>
<th>Xrms</th>
<th>Xmax</th>
<th>Walltime</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ 6</td>
<td>-45.07688304</td>
<td>1.1D-07</td>
<td>0.00037</td>
<td>0.00021</td>
<td>0.00002</td>
<td>0.00003</td>
<td>174.5</td>
</tr>
<tr>
<td></td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geometry "geometry" -> "geometry"

Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Tag</th>
<th>Charge</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>6.0000</td>
<td>1.82723789</td>
<td>1.82729813</td>
<td>1.82705440</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>6.0000</td>
<td>0.00000857</td>
<td>-0.00006053</td>
<td>1.82730027</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>6.0000</td>
<td>-0.00000584</td>
<td>1.82706061</td>
<td>0.00002852</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>6.0000</td>
<td>1.82712018</td>
<td>0.00006354</td>
<td>-0.00002544</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>6.0000</td>
<td>2.74074195</td>
<td>2.74072805</td>
<td>2.74088522</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>6.0000</td>
<td>0.91366407</td>
<td>0.91370055</td>
<td>2.74064976</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>6.0000</td>
<td>0.91351181</td>
<td>2.74080771</td>
<td>0.91352917</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>6.0000</td>
<td>2.74078843</td>
<td>0.91348115</td>
<td>0.91365446</td>
</tr>
</tbody>
</table>
Optimizing the unit cell and geometry for an 8 atom supercell of diamond with PSPW

Lattice Parameters

lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.)

\[
\begin{align*}
\mathbf{a}_1 &= < 3.654, 0.000, 0.000 > \\
\mathbf{a}_2 &= < 0.000, 3.654, 0.000 > \\
\mathbf{a}_3 &= < 0.000, 0.000, 3.654 > \\
a &= 3.654 & b &= 3.654 & c &= 3.654 \\
\alpha &= 90.000 & \beta &= 90.000 & \gamma &= 90.000 \\
\omega &= 48.8
\end{align*}
\]

reciprocal lattice vectors in a.u.

\[
\begin{align*}
\mathbf{b}_1 &= < 0.910, 0.000, 0.000 > \\
\mathbf{b}_2 &= < 0.000, 0.910, 0.000 > \\
\mathbf{b}_3 &= < 0.000, 0.000, 0.910 >
\end{align*}
\]
Optimizing the unit cell and geometry for an 8 atom supercell of diamond with PSPW

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>atomic units</th>
<th>angstroms</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 C</td>
<td>1 C</td>
<td>2.99027</td>
<td>1.58238</td>
</tr>
<tr>
<td>6 C</td>
<td>1 C</td>
<td>2.99027</td>
<td>1.58238</td>
</tr>
</tbody>
</table>

number of included internuclear distances: 7

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 C</td>
<td>1 C</td>
<td>6 C</td>
<td>109.46</td>
</tr>
<tr>
<td>5 C</td>
<td>1 C</td>
<td>7 C</td>
<td>109.48</td>
</tr>
<tr>
<td>5 C</td>
<td>1 C</td>
<td>8 C</td>
<td>109.48</td>
</tr>
<tr>
<td>6 C</td>
<td>1 C</td>
<td>7 C</td>
<td>109.47</td>
</tr>
<tr>
<td>6 C</td>
<td>1 C</td>
<td>8 C</td>
<td>109.46</td>
</tr>
</tbody>
</table>

Proudly Operated by Battelle Since 1945
The C-C bond distance after the geometry optimization is 1.58 Ångs. (experimental value = 1.54 Ångs.).

The cohesive energy of a crystal is the energy needed to separate the atoms of the solid into isolated atoms, i.e.

\[
E_{\text{coh}} = - \left(E_{\text{solid}} - \sum_a E_{\text{atom}}^a \right)
\]

where \(E_{\text{solid}} \) is the energy of the solid and \(E_{\text{atom}}^a \) are the energies of the isolated atoms. In order to calculate the cohesive energy the energy of an isolated carbon atom at the same level of theory and cutoff energy will need to be calculated.

Using this energy and energy of diamond the cohesive energy per atom is calculated to be

\[
E_{\text{coh}} = -\left(-45.07688304 \text{au}/8 - (-5.421213534 \text{au}) \right) = 0.2133968 \text{au} = 5.8 \text{eV}
\]

This value is substantially lower than the experimental value of 7.37 eV! This error is a result of the unit cell being too small for the diamond calculation (or too small of a Brillouin zone sampling). In the next section, we show how increasing the Brillouin zone sampling reduces the error in the calculated cohesive energy.
Optimizing the unit cell for an 8 atom supercell of diamond with BAND

#**** Enter the geometry using fractional coordinates ****

geometry center noautosym noautoz print

 system crystal
 lat_a 3.58d0
 lat_b 3.58d0
 lat_c 3.58d0
 alpha 90.0d0
 beta 90.0d0
 gamma 90.0d0
 end

 C -0.50000d0 -0.50000d0 -0.50000d0
 C 0.00000d0 0.00000d0 -0.50000d0
 C 0.00000d0 -0.50000d0 0.00000d0
 C -0.50000d0 0.00000d0 0.00000d0
 C -0.25000d0 -0.25000d0 -0.25000d0
 C 0.25000d0 0.25000d0 -0.25000d0
 C 0.25000d0 -0.25000d0 0.25000d0
 C -0.25000d0 0.25000d0 0.25000d0

 end

set includestress .true. # option tells driver to optimize the unit cell
set nwpw:zero_forces .true. # option zeros the forces on the atoms--> only lattice
parameters optimized
Optimizing the unit cell for an 8 atom supercell of diamond with BAND

nwpx
 ewald_rcut 3.0
 ewald_ncut 8 #The default value of 1 needs to be increased
 lmbfgs
 xc pbe96
end

#1x1x1 k-point mesh
nwpx
 monkhorst-pack 1 1 1
end
set nwpx:cif_filename diamond111.opt
driver; clear; maxiter 40; end; task band optimize ignore

#2x2x2 k-point mesh
nwpx
 monkhorst-pack 2 2 2
end
set nwpx:cif_filename diamond222.opt
driver; clear; maxiter 40; end; task band optimize ignore
Optimizing the unit cell for an 8 atom supercell of diamond with BAND

#3x3x3 k-point mesh
nwpw
 monkhorst-pack 3 3 3
end
set nwpw:cif_filename diamond333.opt
driver; clear; maxiter 40; end; task band optimize ignore

#4x4x4 k-point mesh
nwpw
 monkhorst-pack 4 4 4
end
set nwpw:cif_filename diamond444.opt
driver; clear; maxiter 40; end; task band optimize ignore

#5x5x5 k-point mesh
nwpw
 monkhorst-pack 5 5 5
end
set nwpw:cif_filename diamond555.opt
driver; clear; maxiter 40; end; task band optimize ignore
Optimizing the unit cell for an 8 atom supercell of diamond with BAND
Parallel timings for AIMD simulation of $\text{UO}_2^{2+} + 122\text{H}_2\text{O}$

Development of algorithms for AIMD has progressed in recent years

- 0.1-10 seconds per step can be obtained on many of today’s supercomputers for most AIMD simulations.
- However, large numbers of cpus are often required
- $5000 \text{ cpus} \times 10 \text{ days} \rightarrow 1.2 \text{ million cpu hours}$
- Very easy to use up 1-2 million CPUs hours in a single simulation
Conventional MD versus AIMD versus AIMD/MM (QM/MM)

<table>
<thead>
<tr>
<th>Conventional molecular dynamics</th>
<th>Ab-initio molecular dynamics</th>
<th>Combined ab-initio molecular dynamics/ molecular dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical, usually two-body potentials, Difficult to treat reactions</td>
<td>Potential obtained from Schrodinger equation, includes all-body and electronic behavior</td>
<td>Potential in “selected region” obtained from Schrodinger equation, includes all-body and electronic behavior</td>
</tr>
<tr>
<td>Empirical potentials parameterized for a small range of PT</td>
<td>Equally applicable under all conditions</td>
<td>Empirical potentials parameterized for a small range of PT</td>
</tr>
<tr>
<td>10^5 particles no problem</td>
<td>600 particles with significant dynamics</td>
<td>1000’s of particles with significant dynamics</td>
</tr>
<tr>
<td>10^3 ps no problem</td>
<td>10’s of ps difficult</td>
<td>10’s of ps easy</td>
</tr>
<tr>
<td>Can be performed on workstations… supercomputers</td>
<td>Still needs supercomputers</td>
<td>Can be performed on workstations… supercomputers</td>
</tr>
</tbody>
</table>
(1) Compute Forces on atoms, $F_i(t)$ for current atomic configuration, $R_i(t)$

$$F_i(t) \leftarrow$$

- calculate using classical potentials
 - can do large systems and long simulation times
- calculate directly from first principles by solving many-electron Schrödinger equations
 - can treat very complex chemistry, but simulations times are very long

(2) Update atom positions using Newton's laws

$$R_i(t+\Delta t) \leftarrow 2*R_i(t) - R_i(t-\Delta t) + \Delta t^2/(M_i)*F_i(t)$$
Expensive?

Energy Conservation – Born-Oppenheimer Error
\[\frac{dE}{dR} = \left(\frac{\partial E}{\partial c} \right) \left(\frac{dc}{dR} \right) + \frac{\partial E}{\partial R} \]

“Attempts to implement such a dynamical scheme in a straightforward fashion prove to be unstable. Specifically, the atomic dynamics do not conserve energy unless a very high degree of convergence in the electronic structure calculation is demanded. If this is not done the electronic system behaves like a heat sink or source……..”

-- Remler and Madden
$^{3}\Sigma_g - S_2$ Energy Surface from QMD Simulation
Car and Parrinello suggested that ionic dynamics could be run in parallel with a fictitious electronic dynamics via the following Lagrangean

\[L = \sum_i \frac{1}{2} \mu \langle \dot{\psi}_i | \dot{\psi}_i \rangle + \sum_I \frac{1}{2} M_I \dot{R}_I^2 + E[\{\psi_i\}, \{R_I\}, \text{constraints}] \]

These equations of motion result in a conservative ionic dynamics that is extremely close to the Born-Oppenheimer surface.

The electronic system behaves quasi-adiabatically. That is the electronic system follows the ionic system and there is very little additional motion wandering away from the Born-Oppenheimer surface.
Basic features of ab-initio molecular dynamics

DFT Equations

\[H\psi_i = \varepsilon_i \psi_i \]

\[H\psi_i(r) = \left\{ -\frac{1}{2} \nabla^2 + V_i(r) + \hat{U}_{NL} + V_H[\rho](r) \right\} \psi_i(r) - \alpha \sum_j K_{ij}(r) \psi_j(r) + (1 - \alpha) V_i[\rho](r) + V_c[\rho](r) \]

CP dynamics: Ion and wavefunction motion coupled. Ground state energy \(\mu = 0 \)

\[\mu \mathbf{F}_i = H\psi_i - \sum_{i=1}^{N_e} \lambda_{ij} \psi_j \]

\[M_1 \mathbf{F}_1 = \mathbf{F}_1 = \sum_{i=1}^{N_e} \langle \psi_i | \frac{\partial H}{\partial R_1} | \psi_i \rangle \]

Want to do this in ~1 second per step

Plane-wave basis sets, pseudopotentials are used to solve PDE
Why do we need a second per step?

- Current ab-initio molecular dynamics simulations for 10 to 100 picoseconds can take several months to complete.

- The step length in ab initio molecular dynamics simulation is on the order of 0.1…0.2 fs/step.

 - 20 ps of simulation time → 200,000 steps
 - At 1 second per step → 2-3 days
 - At 10 seconds per step → 23 days
 - At 30 seconds per step → 70 days

 - 1 ns of simulation time → 10,000,000 steps
 - At 1 second per step → 115 days of computing time
 - At 10 seconds per step → 3 years
 - At 30 seconds per step → 9 years
 - At 0.1 seconds per step → 11.5 days
Cost of AIMD step

$\frac{1}{2} \Delta \Psi + V_{\text{ext}} \Psi + V_H \Psi + V_{\text{xc}} \Psi + V_{x,\text{exact}} \Psi = E\Psi$

$\langle \Psi_i | \Psi_j \rangle = \delta_{ij}$

- $N_a N_g$
- $(N_a N_g + N_g \log N_g + N_e N_g) + N_a N_e N_g$
- $N_e N_g \log N_g + N_e N_g + 2N_g \log N_g + N_g + N_e N_g$
- $N_e N_g \log N_g + N_e N_g$
- $N_e (N_e + 1) N_g \log N_g$
- $N_e^2 N_g + N_e^3$

$N_a = 500, N_e = 500, N_g = 256^3$
- $N_e N_g = 8.4e9$
- $N_e N_g \log (N_g) = 2.0e11$
- $N_a N_e N_g = 4.2e12, N_e N_e N_g = 4.2e12$
- Hybrid-DFT: $N_e (N_e + 1) \log (N_g) = 1.0e14$

Remember we want to do this 100,000+ times

For hybrid-DFT: A day of computation on the PNNL Chinook system → $16K/\epsilon$
Example: \(S_2 \) molecule LDA Car-Parrinello Simulation

title "S2 MD LDA/30Ry"

geometry
$ 0.0 0.0 0.0 ; S 0.0 0.0 1.95$
end

pspw
car-parrinello
time_step 5.0 #Typically between 1 and 20
fake_mass 600.0 #Typically between 300 and 1500
loop 10 100
end
cutoff 15.0
mult 3
lbfgs
end
task pspw energy
task pspw car-parrinello
$3\Sigma^+_g - S_2$ Energy Surface from Car-Parrinello Simulation
Energy Conservation

Total Energy Conservation of triplet S2 simulation

-2.042811100e+01
-2.042811105e+01
-2.042811110e+01
-2.042811115e+01
-2.042811120e+01
0 1000 2000 3000 4000 5000

Total Energy (a.u.)
time (a.u.)
Born-Oppenheimer Error
Questions?
Plane-Wave Basis Sets

System is assumed to be placed inside a unit cell defined by the unit vectors

\[
\vec{a}_1 \quad \vec{a}_2 \quad \vec{a}_3
\]

The volume of the unit cell is

\[
\Omega = \begin{bmatrix} \vec{a}_1, \vec{a}_2, \vec{a}_3 \end{bmatrix} = \vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)
\]
Plane-Wave Basis Sets

\[\mathbf{r} \rightarrow \mathbf{r} + \mathbf{R} \]

where

\[\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3, \quad n_1, n_2, n_3 = \text{integers} \]
Plane-Wave Basis Sets

\[u_n(\vec{r}) = \frac{1}{\sqrt{\Omega}} \sum_G \vec{\psi}_n(\vec{G}) e^{i\vec{G} \cdot \vec{r}} \]

Plane-wave Expansion

Since our system is periodic, our plane-wave expansion must consist of only the plane-waves that have the periodicity of the lattice.

We can determine these plane-waves from the following constraint

\[e^{i\vec{G} \cdot (\vec{r} + \vec{R})} = e^{i\vec{G} \cdot \vec{r}} \]
It is easy to show from the periodicity constraint that the wave-vectors can be defined in terms of the following reciprocal lattice vectors:

\[
\begin{align*}
\vec{b}_1 &= 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\Omega} \\
\vec{b}_2 &= 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\Omega} \\
\vec{b}_3 &= 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\Omega}
\end{align*}
\]

Wave-vectors that satisfy the periodicity of the lattice:

\[
\vec{G}_{i_1 i_2 i_3} = \left(i_1 - \frac{N_1}{2} \right) \vec{b}_1 + \left(i_2 - \frac{N_2}{2} \right) \vec{b}_2 + \left(i_3 - \frac{N_3}{2} \right) \vec{b}_3
\]
The exact form of the plane-wave expansion used in plane-wave code is

\[u_n(\vec{r}) = \frac{1}{\sqrt{\Omega}} \sum_{i_1=1}^{N_1} \sum_{i_2=1}^{N_2} \sum_{i_3=1}^{N_3} \tilde{u}_n(\vec{G}_{i_1i_2i_3}) e^{i\vec{G}_{i_1i_2i_3} \cdot \vec{r}} \]

The upper-limits of the summation \((N_1, N_2, N_3)\) control the spacing of the real-space grid

\[\vec{r}_{i_1i_2i_3} = \left(\frac{i_1}{N_1} - \frac{1}{2} \right) \vec{a}_1 + \left(\frac{i_2}{N_2} - \frac{1}{2} \right) \vec{a}_2 + \left(\frac{i_3}{N_3} - \frac{1}{2} \right) \vec{a}_3 \]
There is a further truncation of plane wave expansion in plane-wave calculations. Namely, only the reciprocal lattice vectors whose kinetic energy lower than a predefined maximum cutoff energy,

\[
\frac{1}{2} |\mathbf{\bar{G}}|^2 < E_{cut}
\]

are kept in the expansion, while the rest of the coefficients are set to zero. Besides reducing the computational load, this truncation strategy limits the effects of unit cell orientation on the outcome of the calculation.

DFT calculations rarely use a completely converged plane-wave basis, but that convergence is usually unnecessary. However, incomplete basis set calculations using different cell sizes require that each calculation use the same \(E_{cut} \).
Since the density is the square of the wavefunctions, it can vary twice as rapidly. Hence for translational symmetry to be formally maintained the density, which is also expanded using plane-waves

\[\rho(\vec{r}) = \sum_n u_n^*(\vec{r})u_n(\vec{r}) = \sum_G \tilde{\rho}(\vec{G})e^{i\vec{G}\cdot\vec{r}} \]

Should contain 8 times more plane-waves than the corresponding wavefunction expansion

\[\frac{1}{2} \left| \vec{G} \right|^2 < 4E_{\text{cut}} \]

Often the Density cutoff energy is chosen to be the same as the wavefunction cutoff energy – This approximation is known as dualling.
Plane-Wave Basis Sets

In solid-state systems, the plane-wave expansion given by

$$u_n(\vec{r}) = \frac{1}{\sqrt{\Omega}} \sum_G \tilde{u}_n(\vec{G}) e^{i\vec{G} \cdot \vec{r}}$$

is not complete. Based on the fact that the translation operators $T(\vec{R})$ are compatible with the Hamiltonian of the system, $[T(\vec{R}), H] = 0$, and that not all eigenkets of $T(\vec{R})$ can be expanded strictly in terms of the set of eigenkets $|u_n\rangle$. The wavefunction expansion can be generalized as

$$|\vec{k}, n\rangle = |\vec{k}\rangle |u_n\rangle \quad \text{or} \quad \psi_{\vec{k}, n}(\vec{r}) = e^{i\vec{k} \cdot \vec{r}} u_n(\vec{r})$$

Bloch's Theorem

Where k are all the allowed wave-vectors in the primitive cell of the reciprocal lattice.